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Nonideal or nonequilibrium transport through porous media is described by a
convection-diffusion equation coupled to a first order kinetics accounting for mass
transfer between the solid and the fluid phases. The overall mathematical model may
be formulated using an integro-differential approach and very effectively Laplace
transformed with complex parametgris k = 0, 1, ..., 2M + 1. Solution in Laplace
space may be addressed by finite elements (FE). The resulting complex valued FE
equations can be solved with either a complex or an equivalent real arithmetic ope-
rating on a problem twice as large as the original one. For both approaches pre-
conditioned projection (or conjugate gradient-like) methods are used. Particularly
difficult problems with high Peclet numbers are investigated as well. The results
from three representative test cases totalling up to 15,000 equations show that the
complex solution approach is superior to the real approach by up to almost two orders
of magnitude, depending on the problem. It is also shown that while the solver per-
formance v is stable in complex arithmetic, this does not hold true for the solver
in real arithmetic, and an argument based on the quality of preconditioning is offered
to account for the observed different computational behavigness Academic press

1. INTRODUCTION

The transport of reactive contaminants in sorbing porous media characterized by i
aggregate diffusion or chemical processes which do not satisfy the local equilibrium
be mathematically described by the so-called two-site, or two-domain or dual poro
model [5, 33, 6]. When a first-order kinetic relationship is used to represent the tran
of mass between domains, the model can be expressed as a modified advection-disp
equation describing general transport coupled to a first order ordinary differential eque
accounting for mass transfer. Different approaches may be used to solve the resulting s\
[14], including: (1) simultaneously solving the coupled transport and kinetic equation [1
(2) discretizing and algebraically solving the mass transfer equation and substitutir
into the transport equation [24]; (3) solving the mass transfer equation analytically
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TRANSPORT THROUGH POROUS MEDIA 539

substituting the integral solution into the transport equation to obtain a single inte
differential equation [15]; (4) solving the system in Laplace space and back transforn
the solution into the time domain [19]. In the latter approach, called FELT (Finite Elem
Laplace Transform), a Laplace transformation is applied to the integro-differential equat
eliminating the time variable and exploiting the simple form of the convolution integral
Laplace space. The transformed equation is solved by finite elements, and an inve
algorithm is applied to recover the solution to the time domain [29, 30].

The finite element solution in Laplace space must be obtained fér21) values of the
Laplace parametas (k =0, 1, ..., 2M 4+ 1). Typical values foM are in the range 15-25
with the need for using a higher valud (~ 40) only in particularly difficult advection
dominated problems [19, 14]. Paramepgrinfluences both the coefficient matrix and the
known vector so for eadkrvalue a distinct finite element set of unsymmetric equations mt
be solved. To preserve stability of the inversion algorithm compleare recommended.
Hence complex systems are obtained in Laplace space.

The solution to these complex systems can be achieved by two different approas
In the first approach, which is followed in [19, 14], theoriginal complex equations are
transformed into Rl real equations with the real and imaginary solution parts forming
single real vector of unknowns. This approach requires solving for each Laplace paran
px a discrete problem twice as large as the corresponding finite element problem. Ir
second approach the complex-system is solved by a complex solver with a comple
arithmetic, thus preserving the original system dimendianin general the numerical
problem may be difficult to solve when advection dominates over dispersion, i.e., for I
Peclet numberPBe (usually forPe > 2).

In both the real and the complex approach iterative solvers belonging to the clas
conjugate gradient-like methods are used, in particular the schemes TFQMR (Trans
Free Quasi Minimal Residual) [13, 27] and Bi-CGSTAB (Bi-Conjugate Gradient Stabilize
[31] which turn out to be the most reliable, robust, and efficient solvers for real unsymme
problems of the type discussed in the present paper [18]. To accelerate convergence TF
and Bi-CGSTAB have to be preconditioned. Although several variants of the incomp
factorization algorithm with controlled fill-in are available and have been much studiec
the solution of real advection-diffusion systems [18], use will be made here of the sin
preconditioner ILU(0) [25, 22, 28] where the incomplete triangular factandU have the
same sparsity pattern as the lower and upper part of the finite element matrix, respect

While an extensive literature on the iterative conjugate gradient solution of real coeffic
systems exists, the solution to complex sparse systems by these methods is address
very limited number of papers. A theoretical outline may be found in [12, 21]. For a f
symmetric non-Hermitian applications in electrodynamics the reader may refer to [7,
Numerical studies in elasto-dynamics and hydrodynamics involving complex unsymme
matrices are provided in [2, 9]. The present analysis is an additional contribution to
solution of complex equations with reference to the FELT method as it applies to
solution of nonequilibrium contaminant transport through porous media.

The outline of the paper is as follows. We first review the FELT algorithm and comm
on the resulting complex finite element systems. The iterative solvers TFQMR and
CGSTAB are briefly described along with the preconditioner used in the numerical te
Then the most salient results of three numerical experiments Miih the range 1000—
15,000 are shown and discussed. The different behavior of the complex and real solve
the Laplace parametgy is investigated in detail, and an argument is given to account 1
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the high sensitivity to the Laplace parameggrof the real solver convergence. A set of
conclusive remarks and recommendations is finally issued.

2. COMPLEX SOLUTION APPROACH

The general equations describing the linear dual-porosity model in a porous medié
[15]

BX,( ij 8)(]) — Ui % = TmW + Tlmailt + A(TmCm + TimCim) + q(Cm —C") — f
(1a)

aC;
Tim% = o(Cm — Cim) — ATimCim, (1b)

wherex; is theith Cartesian coordinaté,is time, ¢, andc, are the concentrations of
the dissolved constituent in the mobile and immobile water regibiisthe linear decay
constanty is the mass transfer coefficient controlling the diffusion process between
mobile and immobile water regiong represents distributed source/sink terms (volumetr
flow rate per unit volume)* is the concentration of the solute injected or withdrawn wit|
the fluid source or sinkf is the distributed mass rate of the solute per unit volume, a
T andT;, are modified retardation coefficients. The dispersion coeffidignts written
using Bear’s relationship [3] which involves the longitudinal and transverse dispersivi
ap andar; v is the Darcy velocity. Equation (1a) holds in a 2-D or 3-D space, with tt
indicial notation denoting summation accordingly.

Integrating Eqg. (1b) analytically, assumiag,(x;, t = 0) = 0, and substituting the result
into (1a) leads to an integro-differential equation for the mobile region concentration [1!

] 0Cm 0Cm dCm
SO O Y IR L P AL AT, ¢
9%, ( ij 3Xj) Vi 0Xj Moy + (¢ + ATm + Q)Cm

t
—ap [ e Tg@mdi-@e+ D, @
0

whereg = a/Tim.

Equation (2) forms the basis for the integro-differential approach of the dual-poro:
model.

If p« is the complex-valued Laplace parameter then applying the Laplace transforr
Eq. (2) leads to the equation [19, 14]

3 9Cm 9Cm aTim(pe+1) ]—
(D =) - 2 T, A+ — T g
A ( 4 axj) Yo%, [ m(P+ ) + Tim(Pc+A) +a| "

+q(€m —C) — f — TmCm(xi, t = 0), ®)

where the bar denotes a Laplace transformed quantity. Equation (3) is a time indeper
transport equation with a complex valued coefficient befgyeto be solved in space,

the time being removed by the Laplace transformation. Its solution is a function of

Laplace parametepk. Equation (3) together with the transformed boundary conditior
(which may be of Dirichlet, Neumann, and Cauchy type) is solved in Laplace space
the finite element (FE) method using standard triangular or tetrahedral finite elements
linear basis functions [15, 17]. Use is made of the classic Galerkin formulation with
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Green lemma applied to the diffusive component of Eq. (3) and no upwind of the cor
ctive term. For a description of this approach which is well known, and the constructiol
the related stiffness and convective matrices and the complex valued capacity matri
reader may refer to widespread textbooks such as [32, 1, ]idthe size of the FE grid,
the solution to Eq. (3) yields aN x N algebraic system

GCc=bh, (4)

whereG = A+ B + F 4+ Swith AandB the standard real stiffness and advection matrice
F areal matrix arising from the Cauchy type boundary conditions Sandomplex-valued
capacity matrix arising from the term which involves in Eqg. (3) the complex Laplace pare
eter px. The complex-valued vectdr accounts for the transformed boundary condition
together with source and sink terms. Note that maBixs unsymmetric because of the
advection matrixB. System (4) represents a set of linear algebraic equations in the com,
space, withG a function of px throughS. Consider the coefficient which multipli€s, in
Eq. (3) and is used to for8. Define py as

Pc= Po+ikn/T, k=0,1,2...,2M+1, (5)

wherei = /=1, T = 0.8tmax, tmax is the maximum simulation time [8], angh = —In(e)/
2T, wheree is the absolute error term. For a selection of these parameters the reader sl
refer to [8].

Separating the real part from the imaginary part in Eqg. (3) and using (5) yield

Tm(Pe+2) _ Zc (K *Tim
Tm(pk+)h)+w__k+|<_n)<ﬂn+a )’ (6)

Tim(Pk+A) +a Y T T

where

k 2
Yy = [Tim(po + A) +a)® + (Tim?ﬂ)

kor \ 2
Z = (Po + M {Tw Yk + aTim[Tim(Po + 1) + ]} + T, (%) :

The relative importance of the imaginary part is measured by the ratio

R = (kn/T)(TmTk + O52Tim)
Zy
(kmt/T)(Tm + @?Tim/ Y)

T (Po+ DT+ @Tim/ YO Tim(Po + 4) + o} + o (T2, /i) (ki /T)2”

()

Note that for a given problerRy is a growing function ok for k larger than a threshold
value, and asymptotically grows linearly wikhHence fork sufficiently large the capacity
matrix S approaches a pure imaginary matrix. Setting O for largek-values leads to

2k

R e 1 20(T/Tp)

(8)

increasing linearly witkk.
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If we denote by, g andcy, | the real and imaginary part of,, the set of complex-valued
equations (4) can be transformed into an equivalent set of real equations twice as larg

(T SE)-C)

whereGg = A+ B+ F 4+ Sz, Sg andS§ being the real and imaginary symmetric par&pf
andbg andb, the real and imaginary part of the right hand side vector containing bound
conditions and source/sink terms. Solving (4) with complex arithmetic is mathematic
equivalent to solving (9) with real arithmetic. However, computationally the equivaler
does not hold as the numerical operations required by the two approaches are different
both a qualitative and a quantitative viewpoint irrespective of the influence of round-
errors on the iterates. This study is aimed at investigating and comparing the computat
performance of TFQMR and Bi-CGSTAB when they are used in the solution of Egs.
and (9).

Whencn(p), k=0,1,...,2M + 1, is available, the back transformed concentratio
Cj.k at nodej is computed as

ePot |1 _ Mt _ kmt _ kmrt
Ci(t) ¥~ — ¢ =Cjo+ {Re(c-,k) cos<> - Im(c-,k)sin<>} } (10)
0= 530 Y R ) - mico ('S

The value oM has to be set large enough to ensure convergence of the summation in (1
the correct concentratian(t). In practiceM is choseninthe range 5 to 40 since cancellatio
errors may become dominant fbt larger than 40 [10]. Selection of an appropriddeis
problem dependent. For instance, steep gradients in advection dominated analyses c
M in the upper range. The parametggx must also be selected carefully. If the solutior
is sought at a time value< t,ax an oscillating solution may be observed despite using
largeM value in (10) [19]. In this case it may be necessary to perform the simulation w
a properly reducethax.

3. PRECONDITIONED PROJECTION METHODS

In this section we summarize the TFQMR scheme for the solution of both Egs. (4)
(9). The theoretical development of the algorithm may found in [13, 27] while an extens
numerical study of the TFQMR performance for real equations has been contribute
[18]. For Bi-CGSTAB the reader is referred to [31].

We consider the system of linear equations

Ax = b, (11)

where matrixA is non-symmetric, possibly complex and sparse, with dimenkios
usual we sexty = S, Xy and|x|| = vxTX

The TFQMR algorithm with general weights may be described by the following recurs
relationships:
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1. Start:
(a) Choose € CN;
(b) Setpy = U =r§S=r9 =b — Axg, Vo = Apy, do =0;
0= w1 = |[r§9|. 60 = 0,70 = 0;
(c) choose such thatog = F§ro # 0 (€.9.,Fo = ro);
2.Forj=1,2,...do:
(a) setoj_1 = FJVj_1, @j_1 = pj_1/0j_1;

gj =Uj1—ajaVj1
r0S = r€C5 — o 1 A(uj_1 +q;)
(b) Form = 2j — 1, 2j do:

. ifm=2j -1,

[raelliisan

e

, if m=2j.
Om = Omy1/Tm-1, Cm = 1//1 + 9%;

Tm = Tm-16mCm; Im = Crznajfl;
dm = Ym + (9%_177m—1/04]—1)dm—1;
Uj_1, if m=2j —1,

wherey,, = { if m = 2]

J?
Xm = Xm-1 + 7m0m
If Xm has converged: stop;

(c) setpj = F3r§eS B = pj/pj1;

uj = ijGS+ Biq;;
Pj = uj + Bj(d; + BiPj_1);
Vi = Ap

The stopping criterion is written as

Irmll _ VM F Tt _

= = €1.
lIToll lIroll

In the numerical experiments that follow we use a zero initial guess with an exit to
ancee; = 10715, As was mentioned in the Introduction both TFQMR and Bi-CGSTAB al
preconditioned with ILU(O).

4. COMPUTATIONAL PERFORMANCE SOLVER IN COMPLEX
AND REAL ARITHMETIC

Three sample problems are used to address the computational performance of the co
solvers. For the Laplace inversion, to ensure convergence epilnalgorithm we adopt
a value ofe =1071° (see [26]) andVl = 7, 15, 31 withr = 2(M + 1) = 16, 32, 64. The
runs are performed on an IBM RISC 60@%0, and the CPU times are given in seconds.

4.1. Sample Probleni: Transport in a Saturated Soil Slab

Nonequilibrium transport in a two-dimensional rectangular slab is considered in 1
example. The problem is adapted from [16] to include nonequilibrium sorption. A unifo
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FIG. 1. Schematic description of the domain for Problem 1.

velocity field is assumed over the whole domain (Fig. 1). The horizontal and vertical m
spacingsAx andAy are 1 and 0.1 m, respectively. This results in a uniform triangulatic
with 1071 nodes. The linear real systems (9) have a dimendiog 2142 and a number of
matrix nonzero elements equal to 7211. The longitudinal and transverse dispersivitie
o = 0.05 m andet = 0.005 m, with a grid Peclet number equalRe = Ax/a = 20.
The retardation factors and the porosities in the mobile and immobile zongg, are0.4
andTim = 0.2. The timetax is equal to 10 days. The mass transfer coefficierst taken
equal to 0.05 day* while the decay constantis set to zero. With these parameter value
the factorRy takes on the expression

_ 7.8110°k42.87107k?
T 4711044+ 29510°6k2

Note thatRy is a growing function ok over the entirk range, as is shown in the leftmost
column of Table I.

Table Il shows the cumulative number IT of iterations, the average cost per itera
IC, and the overall CPU time CPUT required by TFQMR and Bi-CGSTAB to solve tl
r = 2(M + 1) real systems (9). Table Il gives similar results when the complex arithme

TABLE |
Behavior of Ry in the Various Sample Problems

k Problem1 Problem2 Problem3a-3b Problem 3c-3d

1 0.17 0.16 0.17 0.18
2 0.33 0.32 0.34 0.36
3 0.49 0.48 0.51 0.55
4 0.64 0.64 0.66 0.73
5 0.78 0.85 0.82 0.91
15 1.89 2.34 1.80 2.73
31 3.32 4.81 1.93 5.64

63 6.30 9.77 1.50 11.46




is used for Egs. (4), in addition to the speed&pdefined as the ratio between the CPL
times of the real and complex solver.

Inspection of Tables Il and Il reveals the greater efficiency of the complex solver w
S inthe range & = 4.9. The overall cost of the complex solver is markedly less than tf
of the real solver because both IC and IT are smaller. Note that while IC is not sens
to k, IT also depends ok, as is shown in Fig. 2 for the TFQMR solver. Figure 2 point
out that IT vsk increases with the real solution approach while it is stable or slight

TRANSPORT THROUGH POROUS MEDIA

TABLE Il
Performance of TFQMR (T) and Bi-CGSTAB (B) in the
Solution of the Real Systems (9) for Sample Problem 1

r Solver IT IC(s) CPUT(s)
16 T 200 0.04 7.5
16 B 167 0.04 6.6
32 T 462 0.04 17.0
32 B 377 0.04 14.4
64 T 1158 0.04 40.8
64 B 936 0.04 34.2

545

decreases with the complex solution approach. This is due to the fad®thggows with
k and, correspondingly, the antisymmetric p@gt of the coefficient matrix of (9) tends to
dominate over the symmetric p&t. In fact it is

and

Gs =

<GR—GL

/]

(GR+G;

2§

GR+G;

]

-25

Gr— G

)
)

which shows that the off-diagonal blocks®f, become more important when paramegigr
is in the uppek range. By contragks is insensitive tqpk. An enhancea deteriorates the

quality of the incomplete triangular factorization ILU(0) of system (9), and hence the ove
performance of the solver. By distinction, when the original complex system is solved v

complex arithmetic, the preconditioning tends to be improved with incre&siAgtually

TABLE Il

Performance of TFQMR (T) and Bi-CGSTAB (B) in the Solution of the
Complex System (4) for Sample Problem 1

r Solver IT IC(s) CPUT(s) S

16 T 160 0.015 2.4 3.1
16 B 165 0.015 2.5 2.6
32 T 301 0.015 4.6 3.7
32 B 281 0.015 4.4 3.3
64 T 533 0.016 8.3 4.9
64 B 481 0.016 7.6 45

Note. Sindicates the average speed-up of the complex solver.
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Problem 1 2(M+1)=64

30

k

FIG. 2. Performance of TFQMR vgy, k = 0,1,..., 63, for sample Problem 1. (Solid line, real solver;
dashed line, complex solver; dotted line, real solver with reordering.)

in the limit when the imaginary pa$ of S dominates, the incomplete factors Gfare
close to those o which is a symmetric positive definite matrix. Experience shows that t
incomplete factorization of such a matrix often represents an excellent preconditioner
projection method of the kind discussed in the present analysis. Hence preconditioning ¢
complex solver improves fqu, moving from the lower part to the upper partin the interval o
interest (O< k < 80) of the Laplace parameter. The exact opposite occurs to preconditior
of the real solver. The previous findings are conceptually consistent with the results of
analysis performed in [12] which indicates that usually the transformation of a comp
systemto areal one has detrimental effects on convergence. The present study also pr
a quantitative evaluation of the corresponding loss of efficiency in the FELT approach.

Careful inspection of5, suggests, however, that a better preconditioning of the re
matrix might be expected by properly reordering the columns of the coefficient matrix
Eqg. (9). IfGr andS are simply permuted, and the same is done wjtk andcy,, | and the
real and the imaginary parts of the know vector, the symmetric and antysimmetric par
the reordered matrix read

1/ -25 Gr+G}
Gs= = ;
2\ Gr+GL 25

and

1 9 Gr — G},
Ga="= ; :
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TABLE IV
The Same as Table Il for Sample Problem 2

r Solver IT(s) IC(s) CPUT(s)
16 T 380 0.12 47.3
16 B 322 0.12 39.7
32 T 1341 0.12 158.2
32 B 1181 0.12 136.0
64 T 3913 0.12 451.1
64 B 3507 0.11 392.2

The above equations indicate that n@y does not grow further witkk while Gs be-
comes more important for largkr According to [11] the sparsity pattern of a matrix, anc
hence reordering, may affect the quality of the ILU(0) preconditioner. Figure 2 shows
new real solver performance after the above reordering. Notice that IT decredses as
creases. However, IT for the initial reordered systis Q) is much larger than it is for the
original non-reordered matrix. The break-even point occuks=aP5. Reordering yields a
higher solver performance férin the upper range but a slower convergence for the initi
k-values. On balance the performance of the real solver on the Wksgectrum remains
almost unchanged and the marked superiority of the complex solver is reconfirmed fo
FELT method as a whole.

4.2. Sample Problerd: Two Dimensional Transport with Uniform Velocity

The second problem addresses a square domain ok 100 m, with a uniform ve-
locity field from left to right: vy =0.05 m/day,vy =0. Dirichlet boundary conditions
c¢m=1 are prescribed on the left, and no contaminant flux condition on the other si
of the domain. Other parameters of simulation @are= 0.033333 m,t =0.0033333 m,
Tm=Tim= 0.2, « =0.005 day !, andx = 0. The domain is discretized with 61 nodes or
each side for a total o = 3721 nodes and 7200 triangular elemesturns out to be
equal to 500, so the problem is highly advection dominated. The maximum simulation t
is tmax= 150 days. The real linear system has dimensiNn=27442 with 25,561 nonzero
coefficients. The performances of TFQMR and Bi-CGSTAB are shown in Tables IV an
for the real and complex solution approaches, respectively.

The behavior of the TFQMR solver againstthe Laplace parameteris shownin Fig. 3w
points out an outcome similar to the one of Fig. 2 with a larger quantitative differen

TABLE V
The Same as Table Il for Sample Problem 2

r Solver IT IC(s) CPUT(s) S

16 T 208 0.057 11.9 4.0
16 B 217 0.055 12.0 3.3
32 T 337 0.059 19.8 8.0
32 B 333 0.057 19.1 7.1
64 T 544 0.061 33.3 13.5
64 B 503 0.061 30.5 12.9
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Problem 2 2(M+1)=64

FIG. 3. The same as Fig. 2 for sample Problem 2.

however, between the real and the complex solver. The break-even point of the ori
and reordered solvers is observedKes 11. For this example we havg, =1.14 102 +
2.74 10°5k?; Z = 2.88 10°2Y + 4.86 10°® 4 1.37 10'k?, and

61110k + 144107k
T 371054929107k

The Ry expression shows th&; grows approximately linearly with with high R¢ values
occurring fork in the upper range (Table 1), and this accounts for the pronounced differe
in the solid and dashed profiles of Fig. 3 and the high speed-ups achieveid thie upper

k range (Table V).

4.3. Sample Problem3: Two-Dimensional Transport with Non-uniform Velocity

The last sample problem is adapted from [20], and involves transport in a ditch drai
aquifer with a steady rainfall and infiltration of a reactive contaminant. The steady velo
field is computed in [17] and is not uniform. The values of the main simulation parar
ters are given in Table VI. The domain is discretized udihg 15,275 nodes and 29,952
elements. Linear real systems of siz& 2 30,550 with 105,727 nonzero coefficients are
thus obtained. The results of TFQMR and Bi-CGSTAB are shown in Tables VIl and V
for the real solver and in Tables X and X for the complex solver. Inspection of these tal
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TABLE VI
Main Parameters of Sample Problem 3

Problem . (m) ar(M  Tn  Tim  a(dayl) P tha(day

3a 0.66667 0.66667 0.6 0.2 1 3 150
3b 1. 1. 06 0.2 1 2 150
3c 10t 1072 02 0.2 10° 20 6
3d 101 102 0.2 0.2 10° 20 21
TABLE VII
The Same as Table Il for Sample Problems 3a and 3b
Problem 3a Problem 3b
r Solver IT IC(s) CPUT(s) IT IC(s) CPUT(s)
16 T 602 0.49 297.6 767 0.49 371.9
16 B 392 0.52 205.0 474 0.50 237.3
32 T 1169 0.49 579.2 1326 0.49 649.3
32 B 631 0.53 337.2 741 0.52 381.4
64 T 2927 0.49 1424.6 2838 0.49 1383.1
64 B 1390 0.53 729.4 1223 0.53 646.2
TABLE VIII
The Same as Table Il for Sample Problems 3c and 3d
Problem 3c Problem 3d
r Solver IT IC(s) CPUT(s) IT IC(s) CPUT(s)
16 T 127 0.65 82.0 636 0.49 311.4
16 B 88 0.73 64.2 478 0.49 233.5
32 T 309 0.61 189.3 2015 0.48 959.8
32 B 209 0.67 140.9 1136 0.48 545.7
64 T 1192% 0.46 5557.9 23715  0.46 10820.2
64 B 1142% 0.45 5184.3 9035 0.46 4147.1

* No convergence within 1000 iterations for some

TABLE IX
The Same as Table Il for Sample Problems 3a and 3b

r

Problem 3a Problem 3b

Solver IT IC(s) CPUT(s) S IT IC(s) CPUT(s) S

16
16
32
32
64
64

T H AT

538 0.20 109.9 2.7 651 0.20 132.1
931 0.19 181.0 11 917 0.20 179.5
734 021 153.8 3.8 908 0.21 188.1
1105 0.20 220.1 15 1380 0.20 272.2
1014 0.22 219.3 6.5 1232 0.21 263.2
1336 0.21 276.1 2.6 1650 0.20 335.4

2.8
1.3
3.5
14
5.3
1.9

549
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TABLE X
The Same as Table Il for Sample Problems 3c and 3d

Problem 3c Problem 3d

r Solver IT IC(s) CPUT(s) S IT IC(s) CPUT(s) S

16 T 97 0.26 25.0 3.3 270 0.22 58.6 5.3
16 B 73 0.28 20.1 3.2 248 0.21 53.0 4.4
32 T 193 0.26 49.8 3.8 400 0.23 90.0 10.7
32 B 137 0.28 38.5 3.7 357 0.22 79.7 6.8
64 T 385 0.26 99.3 56.0 612 0.23 1435 75.4
64 B 265 0.28 75.2 68.9 517 0.24 122.4 33.9

points out that in most cases Bi-CGSTAB is faster than TFQMR in the solution of both
real and the complex systems while the speecuior the complex TFQMR is generally

higher.

Notice that the performance of TFQMR and Bi-CGSTAB becomes closer in comp
arithmetic. Particularly instructive are the results of sample Problems 3c and 3d wi
indicate that the real solvers converge very slowly, or even fail to convergey fealues
in the uppelk range. By contrast, the complex solver converges quite fast over thelenti
interval. This is consistent with similar results from sample Problems 1 and 2, and alre
commented on, and with th& behavior of Table I. Figure 4 gives the iterations required b
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Problem 3d 2(M+1)=64

FIG. 4. Performance of TFQMR vg,, k = 0,1, ..., 63, for sample Problem 3d. (Solid line, real solver;

dashed line, complex solver.)

40

50

60

70



TRANSPORT THROUGH POROUS MEDIA 551

Problem 3d real (T)

80 100 120 140
iter

FIG. 5. Convergence profile of the original real solver for sample Problem 3d.

TFQMR in the solution of the real and complex systems again&tr sample Problem 3d.
Because the break-even point occurs at a k-value larger than 63, the profile showing th
formance of the real solver with reordering is not plotted in Fig. 4. This result, together v
the others already discussed, reveals that the break-even point of the real (reordered)
is very much problem dependent while the superiority of the complex solver is probl
independent. As experimented with in the previous examples, the performance of the «
plex solver increases for larger k when the imaginary part of the complex matrix beco
more dominant. By distinction the real TFQMR without reordering behaves much wo
and particularly so in Problems 3c and 3d whBgés high and the mass transfer coefficien
is small. Finally, as an example, Figs. 5 and 6 show selected convergence profiles c
real and complex solver, respectively, for sample Problem 3d. Again observe the opp
behavior of the solver vk. While the convergence rate of the complex solver increas
greatly for the highesk-values, the convergence of the real one displays a pronoun:
reduction, and even a stagnationkat 63. Permuting the columns of the real matrix a:
suggested in Subsection 5.1 overall yields no improvement for this example.

5. CONCLUSION

The FELT approach for the integration of nonequilibrium or nonideal solute transpor
porous media requires the solution of several linear complex valued equations with diffe
coefficient matrices and known vectors. These sets of equations can be solved eitt
the complex space by direct use of complex arithmetic or in the real space by definin
equivalent real system twice as large. In both spaces the preconditioned conjugate gra
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lir}t

— k=0

----- k=15
—— k=31
——- k=63
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iter

FIG. 6. Convergence profile of the complex solver for sample Problem 3d.

like methods TFQMR and Bi-CGSTAB have been used. The results show that the com
solver outperforms the real one by a fac&rwhich for TFQMR can be as large as 75,
according to the problem, with an average value of the order of 10. Reordering the
equations may induce a significant change in the local solver performance with, howe
no significant global improvement over the entpgierange, i.e., in the FELT method as a
whole. Similarly complex Bi-CGSTAB is superior to real Bi-CGSTAB, although slightl
less than TFQMR. For particularly difficult advection dominated problems the real sol
may even fail to converge while the complex solver is always successful. Therefore
projection methods relying on complex arithmetic appear to be both a cost-effective a
robust tool for the solution of nonequilibrium or nonideal transport equation by the fin
element Laplace transform approach.
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